164 research outputs found

    Coordinating a multi-retailer decentralized distribution system with random demand based on buyback and compensation contracts

    Get PDF
    Purpose: The purpose of this paper is to set up the coordinating mechanism for a decentralized distribution system consisting of a manufacturer and multiple independent retailers by means of contracts. It is in the two-stage supply chain system that all retailers sell an identical product made by the manufacturer and determine their order quantities which directly affect the expected profit of the supply chain with random demand. Design/methodology/approach: First comparison of the optimal order quantities in the centralized and decentralized system shows that the supply chain needs coordination. Then the coordination model is given based on buyback cost and compensation benefit. Finally the coordination mechanism is set up in which the manufacturer as the leader uses a buyback policy to incentive these retailers and the retailers pay profit returns to compensate the manufacturer. Findings: The results of a numerical example show that the perfect supply chain coordination and the flexible allocation of the profit can be achieved in the multi-retailer supply chain by the buyback and compensation contracts. Research limitations: The results based on assumptions might not completely hold in practice and the paper only focuses on studying a single product in two-stage supply chain Practical implications: The coordination mechanism is applicable to a realistic supply chain under a private information setting and the research results is the foundation of further developing the coordination mechanism for a realistic multi-stage supply chain system with more products. Originality/value: This paper focused on studying the coordination mechanism for a decentralized multi-retailer supply chain by the joint application of the buyback and compensation contracts. Furthermore the perfect supply chain coordination and the flexible allocation of the profit are achieved.Peer Reviewe

    Coordinating a multi-retailer decentralized distribution system with random demand based on buyback and compensation contracts

    Get PDF
    Purpose: The purpose of this paper is to set up the coordinating mechanism for a decentralized distribution system consisting of a manufacturer and multiple independent retailers by means of contracts. It is in the two-stage supply chain system that all retailers sell an identical product made by the manufacturer and determine their order quantities which directly affect the expected profit of the supply chain with random demand. Design/methodology/approach: First comparison of the optimal order quantities in the centralized and decentralized system shows that the supply chain needs coordination. Then the coordination model is given based on buyback cost and compensation benefit. Finally the coordination mechanism is set up in which the manufacturer as the leader uses a buyback policy to incentive these retailers and the retailers pay profit returns to compensate the manufacturer. Findings: The results of a numerical example show that the perfect supply chain coordination and the flexible allocation of the profit can be achieved in the multi-retailer supply chain by the buyback and compensation contracts. Research limitations: The results based on assumptions might not completely hold in practice and the paper only focuses on studying a single product in two-stage supply chain Practical implications: The coordination mechanism is applicable to a realistic supply chain under a private information setting and the research results is the foundation of further developing the coordination mechanism for a realistic multi-stage supply chain system with more products. Originality/value: This paper focused on studying the coordination mechanism for a decentralized multi-retailer supply chain by the joint application of the buyback and compensation contracts. Furthermore the perfect supply chain coordination and the flexible allocation of the profit are achieved.Peer Reviewe

    Optimization of a Parallel CFD Code and Its Performance Evaluation on Tianhe-1A

    Get PDF
    This paper describes performance tuning experiences with a parallel CFD code to enhance its performance and flexibility on large scale parallel computers. The code solves the incompressible Navier-Stokes equations based on the novel Slightly Compressible Model on three-dimensional structure grids. High level loop transformations and argument based code specialization are utilized to optimize its uniprocessor performance. Static arrays are converted into dynamically allocated arrays to improve the flexibility. The grid generator is coupled with the flow solver so that they can exchange grid data in the memory. A detailed performance evaluation is performed. The results show that our uniprocessor optimizations improve the performance of the flow solver for 1.38 times to 3.93 times on Tianhe-1A supercomputer. In memory grid data exchange optimization speeds up the application startup time by nearly two magnitudes. The optimized code exhibits an excellent parallel scalability running realistic test cases. On 4 096 CPU cores, it achieves a strong scaling parallel efficiency of 77.39 % and a maximum performance of 4.01 Tflops

    PSSA: PCA-domain superpixelwise singular spectral analysis for unsupervised hyperspectral image classification.

    Get PDF
    Although supervised classification of hyperspectral images (HSI) has achieved success in remote sensing, its applications in real scenarios are often constrained, mainly due to the insufficiently available or lack of labelled data. As a result, unsupervised HSI classification based on data clustering is highly desired, yet it generally suffers from high computational cost and low classification accuracy, especially in large datasets. To tackle these challenges, a novel unsupervised spatial-spectral HSI classification method is proposed. By combining the entropy rate superpixel segmentation (ERS), superpixel-based principal component analysis (PCA), and PCA-domain 2D singular spectral analysis (SSA), both the efficacy and efficiency of feature extraction are improved, followed by the anchor-based graph clustering (AGC) for effective classification. Experiments on three publicly available and five self-collected aerial HSI datasets have fully demonstrated the efficacy of the proposed PCA-domain superpixelwise SSA (PSSA) method, with a gain of 15–20% in terms of the overall accuracy, in comparison to a few state-of-the-art methods. In addition, as an extra outcome, the HSI dataset we acquired is provided freely online

    Application of a Spectral Method to Simulate Quasi-Three-Dimensional Underwater Acoustic Fields

    Full text link
    The solution and synthesis of quasi-three-dimensional sound fields have always been core issues in computational ocean acoustics. Traditionally, finite difference algorithms have been employed to solve these problems. In this paper, a novel numerical algorithm based on the spectral method is devised. The quasi-three-dimensional problem is transformed into a problem resembling a two-dimensional line source using an integral transformation strategy. Then, a stair-step approximation is adopted to address the range dependence of the two-dimensional problem; because this approximation is essentially a discretization, the range-dependent two-dimensional problem is further simplified into a one-dimensional problem. Finally, we apply the Chebyshev--Tau spectral method to accurately solve the one-dimensional problem. We present the corresponding numerical program for the proposed algorithm and describe some representative numerical examples. The simulation results ultimately verify the reliability and capability of the proposed algorithm.Comment: 43 pages, 20 figures. arXiv admin note: text overlap with arXiv:2112.1360

    Product Family Modeling Method for Rapid Response Design

    Get PDF
    Abstract. Design resources reuse is very important to the rapid response design. In this paper, a design resources reusable model based on product family is established to meet the rapid response design. Firstly, parameters transmission structure of product family is constructed based on Generic Bill of Materials (GBOM) and product master model, and then the reused design resource library is established by the instantiation to master model. Finally product configuration management and variant design is realized on the basis of the reused design resource library. In the developing process of the rapid response design system of machine tool component, the Linear Motion (LM) rolling guide variant design subsystem is developed by the application of the above methods to realize the variant design and configuration management of LM rolling guide. The result shows that the method can provide a reliable guarantee for establishment and effective management of corporate design resource base

    Efficient Commitment to Functional CD34+ Progenitor Cells from Human Bone Marrow Mesenchymal Stem-Cell-Derived Induced Pluripotent Stem Cells

    Get PDF
    The efficient commitment of a specialized cell type from induced pluripotent stem cells (iPSCs) without contamination from unknown substances is crucial to their use in clinical applications. Here, we propose that CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential, could be efficiently obtained from iPSCs derived from human bone marrow mesenchymal stem cells (hBMMSC-iPSCs) with defined factors. By treatment with a cocktail containing mesodermal, hematopoietic, and endothelial inducers (BMP4, SCF, and VEGF, respectively) for 5 days, hBMMSC-iPSCs expressed the mesodermal transcription factors Brachyury and GATA-2 at higher levels than untreated groups (P<0.05). After culturing with another hematopoietic and endothelial inducer cocktail, including SCF, Flt3L, VEGF and IL-3, for an additional 7–9 days, CD34+ progenitor cells, which were undetectable in the initial iPSC cultures, reached nearly 20% of the total culture. This was greater than the relative number of progenitor cells produced from human-skin-fibroblast-derived iPSCs (hFib-iPSCs) or from the spontaneous differentiation groups (P<0.05), as assessed by flow cytometry analysis. These induced cells expressed hematopoietic transcription factors TAL-1 and SCL. They developed into various hematopoietic colonies when exposed to semisolid media with hematopoietic cytokines such as EPO and G-CSF. Hematopoietic cell lineages were identified by phenotype analysis with Wright-Giemsa staining. The endothelial potential of the cells was also verified by the confirmation of the formation of vascular tube-like structures and the expression of endothelial-specific markers CD31 and VE-CADHERIN. Efficient induction of CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential with defined factors, provides an opportunity to obtain patient-specific cells for iPSC therapy and a useful model for the study of the mechanisms of hematopoiesis and drug screening

    Recommendations for Sustainable Development of Selenium-enriched Functional Agriculture in Guangxi under the New Normal

    No full text
    Taking Scientific Outlook on Development as the guiding principle, this paper introduced the principles of innovation, coordination, green, openness and sharing. Based on gifted advantages of selenium-enriched soil and selenium-enriched industry development in Guangxi, it discussed current practice, stressed green, ecological, characteristic demonstration, transformation and upgrading, and targeted poverty alleviation. Finally, it came up with perspective, practical, and operational strategies and recommendations for development of selenium-enriched industry, to provide reference for sustainable development of selenium-enriched functional industry in Guangxi
    • …
    corecore